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Abstract Recent years have witnessed a growing production of Volunteer
Geographic Information (VGI). This led to the general availability of semantically
rich datasets, allowing for novel ways to understand, analyze or generalize urban
areas. This paper presents an approach that exploits this semantic richness to extract
urban settings, i.e., conceptually-uniform geographic areas with respect to certain
activities. We argue that urban settings are a more accurate way of generalizing
cities, since it more closely models human sense-making of urban spaces. To this
end, we formalized and implemented a semantic region growing algorithm—a
modification of a standard image segmentation procedure. To evaluate our
approach, shopping areas of two European capital cities (Vienna and London) were
extracted from an OpenStreetMap dataset. Finally, we explored the use of our
approach to search for urban settings (e.g., shopping areas) in one city, that are
similar to a setting in another.
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1 Introduction

Human conceptualization of space is one of the main research questions in
Geographic Information Science, Spatial Information Theory, and Urban Planning
and many other disciplines (Lynch 1960; Mark and Frank 1991; Tuan 1979). Many
have studied the way humans navigate through or reason about space (Lynch 1960;
Raubal 2001). Building upon the findings of such studies, computational models
and applications have been developed that simulate human conceptualization in
order to improve usability of software or to equip computer systems with basic
intelligence.

A particularly interesting question concerns the conceptualization of places:
The ambiguous meaning of the term poses a considerable challenge to knowledge
engineers whose task is to design computational models of places. As of today,
the most commonly adopted strategy is to represent places by means of points of
interest (POIs). This approach, however, disregards many of the aspects that
seem to characterize human conceptualization of places: (i) there is empirical
evidence (Montello et al. 2003) that people typically conceive a place as a region;
(ii) different persons tend to associate different spatial footprints to the same place
(Montello et al. 2003); (iii) there are indications (Schatzki 1991, p. 655) that
conceptualization of a place relies on the activities that are possible to carry out at
that spatial location—i.e., what some refer to as place affordances (Jordan et al.
1998). Accordingly, the approach of representing places with POIs suffers from
several drawbacks: places are indicated as specific points rather than vague or
approximated regions; while a POI is associated with a precise feature type, the
place affordances are not explicitly indicated and it is up to the user to map from an
activity (e.g., to eat) to a feature type (e.g., a restaurant or a fast-food). Going even
further and focusing our attention on activities, it is easy to see that activities are
usually not restricted to a single place and have an extent in space and time that
involves several places of different kinds. Shopping, for example, can involve
sitting down at a cafe, or going to a bank to withdraw money. Humans are able to
search for areas that afford an activity without having to specify the exact type of
place they are looking for. For example, if the task is “to buy a pair of shoes and
perhaps a coat”, humans can, based on experience or knowledge, think of areas
where they are most likely to find such things (e.g., a shopping street or shopping
mall). In such a case, the individual shop is less of concern since the exact object to
buy is not determined yet. Rather, it is the constellation or setting of shops and
maybe restaurants, that is of importance when attempting to find an area suitable for
an activity.

Inspired by techniques employed in image processing and land use detection, we
present a semantic region growing algorithm that exploits tag information from
OpenStreetMap1 data to produce areas corresponding to a setting of interest. The

1http://www.openstreetmap.org.
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question of how to find such settings is, to our knowledge, not well addressed and
this paper presents preliminary results of an attempt to extract urban settings based
on activities (or affordances). The underlying hypothesis is that people form regions
by mentally grouping space into conceptually homogeneous areas in terms of the
activities they potentially offer. Therefore, place types (represented by tags) are
employed as a means of computing potential activities. This work aims at extending
an ongoing effort to find generalization techniques of urban areas that transcend
common administrative partitions. The contributions of this paper are twofold:

• An implementation of a semantic region growing algorithm, that can be used to
find Urban Settings from point data with place-type information (POI’s);

• A discussion and preliminary evaluation of using the approach to search for
similar areas in other cities.

The paper is structured as follows: Sect. 2 discusses some of the literature on
Place and Settings, introduces some work on Image Processing, and outlines
OpenStreetMap’s knowledge representation scheme and main data quality issues.
Section 3 introduces the proposed method to find appropriate settings. Section 4
presents preliminary results of a case study and Sect. 5 will discuss the outcomes,
limitations and future work. In Sect. 6, we conclude our work.

2 Related Work

In this section, we investigate related work concerning places and settings, image
segmentation, and OpenStreetMap.

2.1 Places and Settings

The concept of place plays an increasingly important role in GIScience (Winter
et al. 2009; Winter and Truelove 2013) and the ontological discussion about how to
model it is ongoing (Couclelis 1992; Humayun and Schwering 2012; Jones et al.
2001; Vasardani et al. 2013; Winter and Truelove 2013). Many suggest that the
semantics of the term Place is tightly bound to the idea of affordance and activities
(Jordan et al. 1998; Scheider and Janowicz 2014). As a matter of fact, drawing the
connection of action to place, is essential for the ability to plan (Abdalla and Frank
2012). Schatzki asserted that: “[…] places are defined by reference to human
activity” (Schatzki 1991, p. 655). He positions human activities as the central
concept for understanding the construction of places. Furthermore, he explains that
such representations of places organize into settings, local areas and regions. This
general notion of hierarchical structuring of space is relatively undisputed and
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supported by findings of other researchers (Couclelis and Gale 1986; Freundschuh
and Egenhofer 1997; Montello 1993; Richter et al. 2013). How these levels of
abstractions are formed, though, is unclear. For example, common administrative
units of abstraction do not always correspond to what people have in mind about
regions (Meegan and Mitchell 2001).

The focus of this work lies on settings which, according to Schatzki, can either
be demarcated by barriers (e.g., apartment building) or identified by bundles of
activities that occur in them (e.g., a park, or shopping street). Ontologically
speaking, they can either be categorized as entities of bona fide (i.e. physical, sharp,
crisp) or fiat (i.e. non-physical, imaginary, human-driven) type (Smith 1995). Since
this work is concerned with entities larger than apartment buildings, such as
shopping areas, fiat objects will be the main type of inquiry. The entities are
therefore of the vista-space scale (Montello 1993), since they can be learned by
human activity.

2.2 Image Segmentation

Image segmentation builds on the idea of grouping pixels into areas. Professionals
in Remote Sensing make use of image segmentation techniques to categorize
satellite images in terms of land use or land cover, e.g., see (Shimabukuro et al.
1998). One implementation of such an image segmentation algorithm is known as
Region Growing, where homogeneous pixels of the image are coalesced (Adams
and Bischof 1994; Fan et al. 2005). Starting from a seed pixel, the algorithm
recursively expands into the adjacent neighborhood and classifies each pixel in it as
similar or not, according to certain constraints. All adjacent pixels similar to the
initial pixel are then merged into a group, referred to as segment.

2.3 OpenStreetMap

OpenStreetMap is a web project, whose main goal is to create a digital map of the
entire world, and is essentially the prototype of Volunteer Geographic Information
(Goodchild 2007). The geometric footprint of spatial features is represented by
means of a simple and exceptionally flexible scheme consisting of

• nodes: pairs of coordinates (longitude and latitude) used to represent point
features;

• ways: lists of nodes used to represent line and surface features;
• relations: sets of nodes, ways, or other relations mainly used to represent

features consisting of several parts.
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The thematic or semantic aspect of spatial features is managed through a tagging
system where each geometric feature is described by an arbitrary number of tags.
As the OpenStreetMap project evolved and prospered over time, its community
developed a set of tagging guidelines that describe which tags should be used for a
specific feature. Before contributing new information to the database, mappers are
asked to carefully read these guidelines. Yet, they are neither obligated to respect
such guidelines nor are their contributions subject to rigorous control.

It has been shown that geometric-wise the OpenStreetMap dataset is rapidly
approaching the coverage and the precision of commercial ones (Zielstra and Zipf
2010). The freedom granted by the tagging system yielded a semantically very
heterogeneous dataset (Mooney and Corcoran 2012). Thus, different volunteers tag
the same feature differently or, conversely, use the same tag to annotate concep-
tually different features. Moreover, some recent works (D’Antonio et al. 2014;
Keßler and de Groot 2013) investigated the possibility of assessing the trustwor-
thiness of VGI data by analyzing the historical evolution of features in a dataset.
However, semantic quality of VGI data remains, at the time of writing, a major
issue.

3 Conceptual Spatial Region Growing Algorithm

In this section, we explain the idea of conceptual settings, the formalization of
setting segmentation, and the implementation of the algorithm.

3.1 Conceptual Spatial Settings

City maps are cartographic representations of spatial data partitioning space into
discrete chunks that represent physical or social (administrative) objects. These
objects are either defined by their physical extent or by authoritative institutions.
Following the argument of Schatzki (1991), there are places that are falling into the
same abstract category due to certain constellations of things present and activities
possible. It is the focus of this work to use a data driven approach to find such
conceptual spatial settings derived from the places an activity needs. For instance,
the description of a shopping area—exemplarily illustrated in Fig. 1—should
obviously contain shops, but can also include parking spots, playgrounds, restau-
rants, and so on.

Furthermore, once homogeneous areas have been defined, a formal description
of the area offers abilities to search, compare or cluster such regions. Figure 1
depicts three conceptual shopping settings together with their respective frequency
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distribution tags. While each one of them contains shops, places like parking spots
and restaurants are also part of the constellation “shopping area” (see Fig. 1).

Fine-grained or significant differences in place constellations can reveal how
much the composition of a setting is suitable for someone’s preferences, or can be
used to identify flaws in the naturally evolved or planned structure of a city. For
instance, when people are required to drive with a car due to an inefficient public
transport system, or out of personal necessity, shopping areas with parking spots are
certainly more attractive destinations. Cities without dedicated parking spots in the
vicinity of shopping areas will ideally have an efficient public transport. Therefore,
using an aggregate description of the coalesced areas as a semantic signature
enables comparison and assessment of conceptual settings. The composed area
offers not only single place affordances, but rather encompasses a set of affordances
which are seamlessly interconnected.

3.2 Formalization

The goal of the proposed approach is to identify areas according to the activities
afforded by constellation of places contained in it. We draw inspiration from a
technique used in image segmentation and adapted the region growing algorithm
(Adams and Bischof 1994) to become a semantic region growing algorithm in the
following manner:

Fig. 1 Schematic
visualization of conceptual
shopping areas: V1, V2, V3
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1. The area of interest M (a city map in our case) is partitioned into n non-
overlapping cells C ¼ fci : i ¼ 1; . . .; ng such that M ¼ Sn

i¼1 ci:
2. The essential concept of our region growing approach is that of a description D:

a formula consisting of one or more predicates specifying the membership of a
single cell ci to a specified setting S, e.g., a description can be: “contains at least
one shop and restaurant”.

3. What in image segmentation jargon is called a segment, is directly comparable
to a setting: a set of contiguous cells satisfying the same description D. A setting
S � C is a subset of the cell partition C and is called complete if it cannot be
extended further with adjacent cells.

4. The segmentation of a mapM according to a description D produces a (possibly
empty) set S of settings such that

S
S2S S � C: A segmentation S ¼ fSg is

called complete if it consists of only one setting such that S = C.
5. As image segmentation relies on a similarity function that is used to decide if

two neighbor pixels are similar, so does our approach rely on a Boolean function
fsim which, given a cell c and a description D, verifies whether c adheres to D.

6. Settings identified through the same description D are pairwise disjoint, i.e. it
holds that for all x; y ^ x 6¼ y : Sx \ Sy ¼ ;: Settings that adhere to different
descriptions can overlap, e.g., a park that crosses a shopping street.

3.3 Implementation

Semantic region growing as used here, is aimed at segmenting or extracting settings
according to a description D and a set of m cells, referred to as seeding cells
Cseed ¼ f~c1;~c2; . . .;~cmg: In the case that a seeding cell ~c 2 Cseed matches a given
description D—i.e., fsimð~c;DÞ ¼ TRUE—and it is not yet classified as a member of
another setting adhering to the same description D, ~c will be the starting point of a
new setting: A recursive process extends the starting cell until the adjacent
neighborhood does not adhere any longer to the description D. We can either
process all cells as seeding cells Cseed ¼ Cð Þ; or find all cells in C that adhere to the
description D and use them as Cseed—both cases yield a robust result in contrast to
random seed generation. For instance, if Cseed contains only five seeding cells, then
the result will be at most five segments/settings. Note that a settings S will not be
identified by the algorithm if S \ Cseed ¼ ;—i.e., if no seeding cell lies within
S. Additionally, it is possible that during the growing process starting from a
seeding cell ~ci and building a setting Si; another seeding cell ~cj is integrated in Si:
When the algorithm will process the seeding cell ~cj; this will not give raise to a new
setting since it has already been assigned to the setting Si: The semantic region
growing technique is implemented as shown in Algorithm 1.
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As can be seen in the implementation of Algorithm 1, the size of the adjacent
neighborhood of a cell can be adapted by using a customized implementation of
neighboursðc;CÞ to specify requirements such as larger or restricted neighbor-
hoods. In any case, a larger neighborhood can be used to ensure a better coverage or
restrictions can be used to separate settings.

4 Case Study

In this section, we present a first evaluation of our approach, explain in an illus-
trative use case how to differentiate between settings of the same conceptualization,
and analyze the results.

4.1 Setup

For a first evaluation of our approach, we attempted to identify shopping
areas in two cities. Therefore, we collected data from Metro Extracts,2 a website
that provides parts of the OSM datasets for cities and their surroundings. We

2http://metro.teczno.com/.
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downloaded and parsed the datasets for Vienna and London. By using GeoTools,3

an open source library for geospatial data, we set up a fine grained hexagonal grid,
whereby the side length of the cells was set to 0.0005 degrees, and preprocessed the
OSM data by assigning the nodes and their tags to the cells. The rules for our
description are based on the following assumptions.

A cell has to encompass at least two places where you can shop (i.e., shops of
every type) or a cell has to encompass at least two tags that relate to places
where someone can get something to eat or drink a coffee (e.g., restaurants,
fast-foods, cafes).

These simple constraints were sufficient to find the commonly-known shopping
areas in Vienna, plus many smaller clusters that can be interpreted as local shop-
ping and leisure areas. The segmentation result for Vienna is shown in Fig. 2. Using
the same description, we employed the algorithm on the dataset of London and
obtained a comparable result (see Fig. 3).

Arguably, there is no hard method to evaluate the result, since the topics of
interest are conceptual settings, that do not really allow for a ground truth.
Nevertheless, an estimation of feasibility is still possible, either by looking at
descriptions found on the internet (e.g., Wikipedia, Tourism Guides) or by
comparing the results to expert knowledge (i.e., people familiar with the city).
Indeed, Mariahilferstraße and Oxford Street are well-known shopping streets that
have been correctly identified as part of shopping settings by our algorithm. Also,
detailed explorations of some other clusters identified in the Vienna dataset,
consistently revealed that all larger found regions can be considered shopping areas.

Fig. 2 Visualization of the results identified by the semantic region growing algorithm in Vienna

3http://docs.geotools.org/.
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4.2 Use Case Example and Analysis

Now that the areas are identified, the next step is to compare the identified shopping
areas in Vienna and London. Consider the following scenario.

Alice grew up in London and she knows from experience that in the urban
setting of Oxford Street there are plenty of places to withdraw money (i.e.,
ATMs and banks), that there is a big choice of cafes and restaurants to go for
lunch or get something to drink. Also, there is a large diversity of shops and
several tourism attractions that she sees when moving from a shop to another.
Alice plans a trip to Vienna and she would like to find, in advance, areas of
the city that are similar to her idea of Oxford Street.

To model these preferences and action possibilities, we defined the following
four features, which will later be used to define a similarity-distance to other
identified shopping areas/settings:

1. The number of tags in a setting of type bank or ATM n1
2. The number of tags in a setting of type restaurant or cafe or fast food n2
3. The number of tags in a setting of type tourism n3
4. The number of different shopping types (i.e., subcategories of shops) n4

Fig. 3 Visualization of the results identified by the semantic region growing algorithm in London
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We denote by sðSÞ the total number of cells in a given segment/setting S. We set
the absolute values n1, n2, n3 and n4, which we defined in the list above, in relation
to the area of the setting, which yields normalized density values (where m is the
number of defined features):

ri ¼ ni
sðSÞ

8i ¼ 1; . . .;m ð1Þ

To explore the similarity in respect to our defined feature vector, we are now
considering the following distance measure:

Xm

i¼1

jrðS1Þi � rðS2Þi j ð2Þ

Equation (2) formalizes the sum of the absolute values of the differ-

ences between corresponding features for two settings with normalized values rðS1Þð�Þ
and rðS2Þð�Þ :

Based on the use case scenario explained above, Alice wants to know what are
similar shopping areas in comparison to London’s Oxford Street in Vienna.

Therefore, we denote by rðS1Þi the values of Oxford Street and make a comparison
with the larger sized extracted conceptual shopping settings of Vienna, since we
normalized the data based on the size of the settings. According to the total
deviation [see Eq. (2)] the best matching setting is the area found around the Inner
City and the second one is the cluster around the lower part of Mariahilferstraße,
which is illustrated in Fig. 4.

Fig. 4 Visualization of the identified shopping areas in Vienna, which are most similar to the
Oxford Street (London)
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Figure 5 illustrates the deviations of the defined preferences between the areas of
Inner City and Oxford Street (black), as well as the Mariahilferstraße and Oxford
Street (grey). The total deviation, which is defined through the similarity-distance
given in Eq. (2), can be read off the absolute deviation axis. Thereby, a lower
deviation is indicated when the instance in comparison, i.e. the line for Inner City or
Mariahilferstraße, is nearer to the center. In this case, it can be clearly seen that the
total deviation of the Inner City is lower than the deviation of the Mariahilferstraße
in comparison to the Oxford Street area. To enable a more fine grained comparison,

we plotted for each i = 1,…, 4 the value of jrðS1Þi � rðSjÞi j; which is the single
deviation on an independent axis. In the previous formula, the variable j stands for
either 2 or 3, which corresponds to Inner City or Mariahilferstraße, respectively.
We briefly elaborate on the individual feature differences according to Fig. 5:

1. Regarding the density of banks and ATMs, the area found in the Inner City as
well as the one aroundMariahilferstraße are both relatively close to the area that
contains Oxford Street.

2. In terms of the density of tourism attractions Mariahilferstraße is a bit closer to
Oxford Street than the Inner City.

3. The higher deviations in terms of density of Restaurants, Cafe, and Fast Food
places, and shop diversity of the Mariahilferstraße indicate that the Inner City is
more similar to the Oxford Street.

Fig. 5 The deviations of the conceptual shopping area Oxford Street (London) to the conceptual
Mariahilferstraße and Inner City (Vienna) in respect to the defined feature vector
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This section showed that our approach allows to search for urban settings. By
discriminating areas suitable for certain activities, it is possible to compare those on
the basis of a formal description of preferences. The type descriptions of places, as
available in OpenStreetMap, do provide the basis for a mapping of activity
possibilities to conceptual Settings.

5 Discussion, Limitations and Future Research Directions

The work presented in this paper is an excerpt of ongoing work that investigates a
data driven approach of urban area generalization. Aside from many other chal-
lenges, this research has to face, two are most striking: (1) The choice of the
description criteria D and evaluation of the results; and (2) the semantic ambiguity
as well as incompleteness of VGI data.

The first point is a problem that cannot be solved, since there is no hard truth
about what people consider a shopping area or not. Most likely, user studies will
have to be conducted in order to compare the areas found to the areas users think
are part of a category. The second problem is a well known problem and relates to
the data-source itself.

The question of how people communicate and discuss about space is an
important aspect in spatial information theory (Weiser and Frank 2013). Especially
when intending to compare settings in different cities and countries, cultural and
language specific differences might pose challenges for processing the data. For
example, in some countries people would relate the place description cafe to a small
restaurant, whereas in other countries people could relate the term to coffee
company brands. Comparing these different concepts is not directly possible.
Therefore, there is a need for more research in the mapping of place affordances to
semantics used in VGI.

An issue to be addressed in future work concerns the consideration of spatial
relations among objects or categories of objects. While the presence of a certain
type of object allows for affording a certain activity, the relative configuration of
such objects in space also plays a role. Consider, for example, one is interested in
identifying panoramic areas: the simple existence and the vicinity of a visually-
appealing entity (e.g., a lake) and of a walkable and recreational area (e.g., a green
spot with some benches) is not enough to categorize the area as panoramic spot.
There might be a wall or building in between, hindering the line of sight going from
the benches to the lake. Accordingly, for future work, we plan to integrate spatial
configuration analysis (Fogliaroni 2013), so that finer differentiation between the
settings is possible.

Concerning the method itself, in the future we will explore the possibility of
extracting the characteristics of a defined setting, to create a description D that finds
settings in other areas. For instance, in the presented use case (Sect. 4), Alice would
be able mark an area on the map, from which the descriptions for the region
growing algorithm is extracted and used to search for interesting areas in Vienna.
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6 Summary and Conclusion

In this paper, we propose a novel approach to find and extract urban settings from
typed point data. We were able to implement a framework that can be used for
spatial search or analysis. We presented a formalization of our approach that is
based on the idea of region growing—an Image Segmentation technique—descri-
bed the implementation of it, and illustrated its feasibility by applying it to a use
case scenario. In the case study, we show that our implementation enabled us to find
well-known shopping areas in Vienna and London by using raw data of Open-
StreetMap as a source. We analyzed the results by applying similarity-metrics that
potentially enable a user to compare well-known shopping areas between cities.
Built upon the preliminary findings, we identified various improvements and open
questions, that once solved can lead to novel ways of searching, analyzing or
comparing cities.
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